IMO 2012 problems

This year IMO problems !!!!

Problem 1 :

Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC. Prove that M is the midpoint of ST.

Problem 2 :

Let {n\ge 3} be an integer, and let {a_2,a_3,\ldots ,a_n} be positive real numbers such that  {a_{2}a_{3}\cdots a_{n}=1}  Prove that

\displaystyle \left(a_{2}+1\right)^{2}\left(a_{3}+1\right)^{3}\dots\left(a_{n}+1\right)^{n}>n^{n}.

Problem 3 :

The liar’s guessing game is a game played between two players {A} and {B}. The rules of the game depend on two positive integers {k} and {n} which are known to both players.

At the start of the game {A} chooses integers {x} and {N} with {1 \le x \le N.} Player {A} keeps {x}secret, and truthfully tells {N} to player {B}. Player {B} now tries to obtain information about {x} by asking player {A} questions as follows: each question consists of {B} specifying an arbitrary set {S} of positive integers (possibly one specified in some previous question), and asking {A}whether {x} belongs to {S}. Player {B} may ask as many questions as he wishes. After each question, player {A} must immediately answer it with [i]yes[/i] or [i]no[/i], but is allowed to lie as many times as she wants; the only restriction is that, among any {k+1} consecutive answers, at least one answer must be truthful.

After {B} has asked as many questions as he wants, he must specify a set {X} of at most {n}positive integers. If {x} belongs to {X}, then {B} wins; otherwise, he loses. Prove that:

1. If {n \ge 2^k,} then {B} can guarantee a win. 2. For all sufficiently large {k}, there exists an integer {n \ge (1.99)^k} such that {B} cannot guarantee a win.

Problem 4 :

Find all functions {f:\mathbb Z\rightarrow \mathbb Z} such that, for all integers {a,b,c} that satisfy {a+b+c=0}, the following equality holds:

\displaystyle f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).

 Problem 5 :

Let {ABC} be a triangle with {\angle BCA=90^{\circ}}, and let {D} be the foot of the altitude from {C}. Let {X} be a point in the interior of the segment {CD}. Let {K} be the point on the segment {AX}such that {BK=BC}. Similarly, let {L} be the point on the segment {BX} such that {AL=AC}. Let {M} be the point of intersection of {AL} and {BK}.

Show that {MK=ML}.

Problem 6 :

Find all positive integers {n} for which there exist non-negative integers {a_1, a_2, \ldots, a_n} such that

\displaystyle \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \cdots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \cdots + \frac{n}{3^{a_n}} = 1.

You may download the PDF version :
IMO 2012

Thank you and good luck for these delicious problems


About shivang1729

I am a young student who loves math . I like number theory and inequalities part the most , and preparing for Math Olympiads :)

Posted on Thursday,July 12, 2012, in Problems and tagged , , , , . Bookmark the permalink. 5 Comments.

  1. This blog has inspired me to continue working on my own blog

  2. Hey there my name is Sally and I’m a writer and this blog really helped me. I’m refocused! Thanks!

  3. Very interesting information!Perfect just what I was looking for!

  4. Solution to problem 1


  5. Thanks for your whole effort on this blog. Kim take interest in engaging in investigation and it’s really easy to see why. Many of us notice all concerning the dynamic medium you present very helpful ideas through this website and even invigorate contribution from others on this matter plus our princess has always been being taught so much. Have fun with the rest of the year. You’re the one performing a good job.

Comments / doubts/answers here:

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: